Learning to recognize objects with little supervision

Peter Carbonetto 1 Gyuri Dorkó 2 Cordelia Schmid 2 Hendrik Kück 1 Nando De Freitas 1
2 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : This paper shows (i) improvements over state-of-the-art local feature recognition systems, (ii) how to formulate principled models for automatic local feature selection in object class recognition when there is little supervised data, and (iii) how to formulate sensible spatial image context models using a conditional random field for integrating local features and segmentation cues (superpixels). By adopting sparse kernel methods, Bayesian learning techniques and data association with constraints, the proposed model identifies the most relevant sets of local features for recognizing object classes, achieves performance comparable to the fully supervised setting, and obtains excellent results for image classification.
Type de document :
Article dans une revue
International Journal of Computer Vision, Springer Verlag, 2008, 77 (1-3), pp.219-238. <http://www.springerlink.com/content/e82lxn4356237r7h/>. <10.1007/s11263-007-0067-7>
Liste complète des métadonnées

https://hal.inria.fr/inria-00548668
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 10:25:44
Dernière modification le : mercredi 9 juillet 2014 - 16:16:46

Identifiants

Collections

Citation

Peter Carbonetto, Gyuri Dorkó, Cordelia Schmid, Hendrik Kück, Nando De Freitas. Learning to recognize objects with little supervision. International Journal of Computer Vision, Springer Verlag, 2008, 77 (1-3), pp.219-238. <http://www.springerlink.com/content/e82lxn4356237r7h/>. <10.1007/s11263-007-0067-7>. <inria-00548668>

Partager

Métriques

Consultations de la notice

94