Enhanced Local Texture Feature Sets for Face Recognition under Difficult Lighting Conditions

Xiaoyang Tan 1 Bill Triggs 1
1 AI - Artificial Intelligence
LJK - Laboratoire Jean Kuntzmann
Abstract : Recognition in uncontrolled situations is one of the most important bottlenecks for practical face recognition systems. We address this by combining the strengths of robust illumination normalization, local texture based face representations and distance transform based matching metrics. Specifically, we make three main contributions: (i) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; (ii) we introduce Local Ternary Patterns (LTP), a generalization of the Local Binary Pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions; and (iii) we show that replacing local histogramming with a local distance transform based similarity metric further improves the performance of LBP/LTP based face recognition. The resulting method gives state-of-the-art performance on three popular datasets chosen to test recognition under difficult illumination conditions: Face Recognition Grand Challenge version 1 experiment 4, Extended Yale-B, and CMU PIE.
Type de document :
Communication dans un congrès
S. Kevin Zhou and Wenyi Zhao and Xiaoou Tang and Shaogang Gong. AMFG - 3rd International Workshop Analysis and Modelling of Faces and Gestures, Oct 2007, Rio de Janeiro, Brazil. Springer-Verlag, 4778, pp.168-182, 2007, Lecture Notes in Computer Science (LNCS). 〈http://www.springerlink.com/content/40437143006h1687/〉. 〈10.1007/978-3-540-75690-3_13〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00548674
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 10:27:08
Dernière modification le : lundi 9 avril 2018 - 12:22:49
Document(s) archivé(s) le : lundi 5 novembre 2012 - 14:40:49

Fichier

TT07.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Xiaoyang Tan, Bill Triggs. Enhanced Local Texture Feature Sets for Face Recognition under Difficult Lighting Conditions. S. Kevin Zhou and Wenyi Zhao and Xiaoou Tang and Shaogang Gong. AMFG - 3rd International Workshop Analysis and Modelling of Faces and Gestures, Oct 2007, Rio de Janeiro, Brazil. Springer-Verlag, 4778, pp.168-182, 2007, Lecture Notes in Computer Science (LNCS). 〈http://www.springerlink.com/content/40437143006h1687/〉. 〈10.1007/978-3-540-75690-3_13〉. 〈inria-00548674〉

Partager

Métriques

Consultations de la notice

2415

Téléchargements de fichiers

2367