Audio keyword extraction by unsupervised word discovery

Armando Muscariello 1 Guillaume Gravier 1 Frédéric Bimbot 1
1 METISS - Speech and sound data modeling and processing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : In real audio data, frequently occurring patterns often convey relevant information on the overall content of the data. The possibility to extract meaningful portions of the main content by identifying such key patterns, can be exploited for providing audio summaries and speeding up the access to relevant parts of the data. We refer to these patterns as audio motifs in analogy with the nomenclature in its counterpart task in biology. We describe a framework for the discovery of audio motifs in streams in an unsupervised fashion, as no acoustic or linguistic models are used. We define the fundamental problem by decomposing the overall task into elementary subtasks; then we propose a solution that combines a one-pass strategy that exploits the local repetitiveness of motifs and a dynamic programming technique to detect repetitions in audio streams. Results of an experiment on a radio broadcast show are shown to illustrate the effectiveness of the technique in providing audio summaries of real data.
Type de document :
Communication dans un congrès
INTERSPEECH 2009: 10th Annual Conference of the International Speech Communication Association, Sep 2009, Brighton, United Kingdom. 2009
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00551769
Contributeur : Armando Muscariello <>
Soumis le : dimanche 20 février 2011 - 19:13:21
Dernière modification le : jeudi 11 janvier 2018 - 06:20:09
Document(s) archivé(s) le : samedi 21 mai 2011 - 02:31:15

Fichier

is_09_motif.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00551769, version 1

Collections

Citation

Armando Muscariello, Guillaume Gravier, Frédéric Bimbot. Audio keyword extraction by unsupervised word discovery. INTERSPEECH 2009: 10th Annual Conference of the International Speech Communication Association, Sep 2009, Brighton, United Kingdom. 2009. 〈inria-00551769〉

Partager

Métriques

Consultations de la notice

649

Téléchargements de fichiers

283