Skip to Main content Skip to Navigation
Conference papers

Towards robust word discovery by self similarity matrix comparison

Armando Muscariello 1 Guillaume Gravier 1 Frédéric Bimbot 1 
1 METISS - Speech and sound data modeling and processing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : Word discovery is the task of discovering and collecting occurrences of repeating words in the absence of prior acoustic and linguistic knowledge, or training material. The capability of extracting such patterns (or motifs) represents a preliminary step towards automatic mining of contentful information in spoken documents. The absence of modelling and training data, forces the use of direct pattern matching of speech templates, which, in turn, is sensitive to speech variability, like the inter-speaker one, for instance. In the present work, a variability tolerant pattern recognition technique is proposed that relies on the comparison of self similarity matrices of speech sequences. The joint use of such technique and a dynamic time warping dissimilarity measure, is shown to account for more variability with respect to the DTW-based system alone, as demonstrated on several hours of broadcast news shows.
Complete list of metadata

https://hal.inria.fr/inria-00563418
Contributor : Armando Muscariello Connect in order to contact the contributor
Submitted on : Friday, February 4, 2011 - 7:58:40 PM
Last modification on : Friday, February 4, 2022 - 3:18:46 AM

Identifiers

  • HAL Id : inria-00563418, version 1

Citation

Armando Muscariello, Guillaume Gravier, Frédéric Bimbot. Towards robust word discovery by self similarity matrix comparison. IEEE International Conference on Acoustics, Speech and Signal Processing, May 2011, Prague, Czech Republic. ⟨inria-00563418⟩

Share

Metrics

Record views

159