One microphone singing voice separation using source-adapted models

Alexey Ozerov 1, 2 Pierrick Philippe 2 Rémi Gribonval 1 Frédéric Bimbot 1
1 METISS - Speech and sound data modeling and processing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : In this paper, the problem of one microphone source separation applied to singing voice extraction is studied. A probabilistic approach based on Gaussian Mixture Models (GMM) of the short time spectra of two sources is used. The question of source model adaptation is investigated in order to improve separation quality. A new adaptation method consisting in a filter adaptation technique via the Maximum Likelihood Linear Regression (MLLR) is presented with an associated filter-adapted training phase.
Type de document :
Communication dans un congrès
Applications of Signal Processing to Audio and Acoustics, 2005. IEEE Workshop on, Oct 2005, Mohonk Mountain House, New Paltz, New York, United States. IEEE, pp.90--93, 2005, 〈10.1109/ASPAA.2005.1540176〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00564491
Contributeur : Rémi Gribonval <>
Soumis le : mercredi 9 février 2011 - 08:57:26
Dernière modification le : mercredi 16 mai 2018 - 11:23:03
Document(s) archivé(s) le : mardi 10 mai 2011 - 02:49:43

Fichier

2005_WASPAA_OzerovEtlAl.pdf
Accord explicite pour ce dépôt

Identifiants

Citation

Alexey Ozerov, Pierrick Philippe, Rémi Gribonval, Frédéric Bimbot. One microphone singing voice separation using source-adapted models. Applications of Signal Processing to Audio and Acoustics, 2005. IEEE Workshop on, Oct 2005, Mohonk Mountain House, New Paltz, New York, United States. IEEE, pp.90--93, 2005, 〈10.1109/ASPAA.2005.1540176〉. 〈inria-00564491〉

Partager

Métriques

Consultations de la notice

546

Téléchargements de fichiers

272