Approximate Weak Greedy Algorithms

Abstract : We present a generalization of V. Temlyakov's weak greedy algorithm, and give a sufficient condition for norm convergence of the algorithm for an arbitrary dictionary in a Hilbert space. We provide two counter-examples to show that the condition cannot be relaxed for general dictionaries. For a class of dictionaries with more structure, we give a more relaxed necessary and sufficient condition for convergence of the algorithm. We also provide as detailed discussion of how a "real-world" implementation of the weak greedy algorithm, when one has to take into account floating point arithmetic and other types of finite precision errors, can be modeled by the new algorithm.
Type de document :
Article dans une revue
Advances in Computational Mathematics, Springer Verlag, 2001, 14 (4), pp.361-378. 〈10.1023/A:1012255021470〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00576643
Contributeur : Rémi Gribonval <>
Soumis le : mardi 15 mars 2011 - 09:32:33
Dernière modification le : mercredi 21 mars 2018 - 09:28:10
Document(s) archivé(s) le : jeudi 16 juin 2011 - 02:33:44

Fichier

2001_ACM_GribonvalNielsen.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Rémi Gribonval, Morten Nielsen. Approximate Weak Greedy Algorithms. Advances in Computational Mathematics, Springer Verlag, 2001, 14 (4), pp.361-378. 〈10.1023/A:1012255021470〉. 〈inria-00576643〉

Partager

Métriques

Consultations de la notice

98

Téléchargements de fichiers

53