Tree automata with equality constraints modulo equational theories

Florent Jacquemard 1 Michael Rusinowitch 2 Laurent Vigneron 2
1 DAHU - Verification in databases
CNRS - Centre National de la Recherche Scientifique : UMR8643, Inria Saclay - Ile de France, ENS Cachan - École normale supérieure - Cachan, LSV - Laboratoire Spécification et Vérification [Cachan]
2 CASSIS - Combination of approaches to the security of infinite states systems
FEMTO-ST - Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174), INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : This paper presents new classes of tree automata combining automata with equality test and automata modulo equational theories. We believe that this class has a good potential for application in e.g. software verification. These tree automata are obtained by extending the standard Horn clause representations with equational conditions and rewrite systems. We show in particular that a generalized membership problem (extending the emptiness problem) is decidable by proving that the saturation of tree automata presentations with suitable paramodu- lation strategies terminates. Alternatively our results can be viewed as new decidable classes of first-order formula.
Document type :
Conference papers
Complete list of metadatas

Cited literature [22 references]  Display  Hide  Download

https://hal.inria.fr/inria-00579011
Contributor : Florent Jacquemard <>
Submitted on : Tuesday, March 22, 2011 - 11:01:55 PM
Last modification on : Thursday, February 7, 2019 - 5:29:25 PM
Long-term archiving on : Thursday, June 23, 2011 - 2:59:16 AM

File

rr-lsv-2006-07.pdf
Files produced by the author(s)

Identifiers

Citation

Florent Jacquemard, Michael Rusinowitch, Laurent Vigneron. Tree automata with equality constraints modulo equational theories. 3d International Joint Conference on Automated Reasoning (IJCAR), Aug 2006, Seattle, United States. pp.557-571, ⟨10.1007/11814771_45⟩. ⟨inria-00579011⟩

Share

Metrics

Record views

308

Files downloads

179