Revisiting Numerical Pattern Mining with Formal Concept Analysis

Abstract : In this paper, we investigate the problem of mining numerical data in the framework of Formal Concept Analysis. The usual way is to use a scaling procedure --transforming numerical attributes into binary ones-- leading either to a loss of information or of efficiency, in particular w.r.t. the volume of extracted patterns. By contrast, we propose to directly work on numerical data in a more precise and efficient way, and we prove it. For that, the notions of closed patterns, generators and equivalent classes are revisited in the numerical context. Moreover, two original algorithms are proposed and used in an evaluation involving real-world data, showing the predominance of the present approach.
Type de document :
Communication dans un congrès
Twenty second International Joint Conference on Artificial Intelligence - IJCAI 2011, Jul 2011, Barcelona, Spain. 2011
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00584371
Contributeur : Mehdi Kaytoue <>
Soumis le : mercredi 23 novembre 2011 - 19:35:28
Dernière modification le : jeudi 11 janvier 2018 - 06:19:55
Document(s) archivé(s) le : vendredi 24 février 2012 - 02:20:26

Fichiers

kaytoue.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00584371, version 1
  • ARXIV : 1111.5689

Collections

Citation

Mehdi Kaytoue, Sergei O. Kuznetsov, Amedeo Napoli. Revisiting Numerical Pattern Mining with Formal Concept Analysis. Twenty second International Joint Conference on Artificial Intelligence - IJCAI 2011, Jul 2011, Barcelona, Spain. 2011. 〈inria-00584371〉

Partager

Métriques

Consultations de la notice

340

Téléchargements de fichiers

231