Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency

Álvaro Fialho 1 Youssef Hamadi 1, 2, 3 Marc Schoenauer 2, 4
4 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : In this on-going work, we aim at contributing to the issue of energy consumption by proposing tools to automatically define some aspects of the architectural and structural design of buildings. Our framework starts with a building design, and automatically optimizes it, providing to the architect many variations that minimize, in different ways, both energy consumption and construction costs. The optimization stage is done by the combination of an energy consumption simulation program, EnergyPlus, with a state-of-the-art multi-objective evolutionary algorithm, Hype. The latter explores the design search space, automatically generating new feasible design solutions, which are then evaluated by the energy simulation software. Preliminary results are presented, in which the proposed framework is used to optimize the orientation angle of a given commercial building and the materials used for the thermal insulation of its walls.
Type de document :
Communication dans un congrès
GECCO 2011 Workshop on GreenIT Evolutionary Computation, Jul 2011, Dublin, Ireland. 2011
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00591930
Contributeur : Álvaro Fialho <>
Soumis le : mardi 10 mai 2011 - 15:07:37
Dernière modification le : jeudi 11 janvier 2018 - 06:22:14
Document(s) archivé(s) le : vendredi 9 novembre 2012 - 11:02:00

Fichier

wk1303b-fialho.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00591930, version 1

Citation

Álvaro Fialho, Youssef Hamadi, Marc Schoenauer. Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency. GECCO 2011 Workshop on GreenIT Evolutionary Computation, Jul 2011, Dublin, Ireland. 2011. 〈inria-00591930〉

Partager

Métriques

Consultations de la notice

323

Téléchargements de fichiers

875