SAR Image Classification with Non-stationary Multinomial Logistic Mixture of Amplitude and Texture Densities

Koray Kayabol 1 Aurélie Voisin 1 Josiane Zerubia 1
1 ARIANA - Inverse problems in earth monitoring
CRISAM - Inria Sophia Antipolis - Méditerranée , SIS - Signal, Images et Systèmes
Abstract : We combine both amplitude and texture statistics of the Synthetic Aperture Radar (SAR) images using Products of Experts (PoE) approach for classification purpose. We use Nakagami density to model the class amplitudes. To model the textures of the classes, we exploit a non-Gaussian Markov Random Field (MRF) texture model with t-distributed regression error. Non-stationary Multinomial Logistic (MnL) latent class label model is used as a mixture density to obtain spatially smooth class segments. We perform the Classification Expectation-Maximization (CEM) algorithm to estimate the class parameters and classify the pixels. We obtained some classification results of water, land and urban areas in both supervised and semi-supervised cases on TerraSAR-X data.
Type de document :
Communication dans un congrès
IEEE International Conference on Image Processing ICIP, Sep 2011, Brussels, Belgium. pp.173-176, 2011
Liste complète des métadonnées

https://hal.inria.fr/inria-00592252
Contributeur : Koray Kayabol <>
Soumis le : jeudi 28 juillet 2011 - 17:38:55
Dernière modification le : mercredi 27 février 2013 - 14:31:56
Document(s) archivé(s) le : lundi 12 novembre 2012 - 15:05:56

Fichier

icip11ITMLLv4.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00592252, version 1

Collections

Citation

Koray Kayabol, Aurélie Voisin, Josiane Zerubia. SAR Image Classification with Non-stationary Multinomial Logistic Mixture of Amplitude and Texture Densities. IEEE International Conference on Image Processing ICIP, Sep 2011, Brussels, Belgium. pp.173-176, 2011. <inria-00592252>

Partager

Métriques

Consultations de
la notice

189

Téléchargements du document

137