Reducing the amount of pivoting in symmetric indefinite systems

Abstract : This paper illustrates how the communication due to pivoting in the solution of symmetric indefinite linear systems can be reduced by considering innovative approaches that are different from pivoting strategies implemented in current linear algebra libraries. First a tiled algorithm where pivoting is performed within a tile is described and then an alternative to pivoting is proposed. The latter considers a symmetric randomization of the original matrix using the so-called recursive butterfly matrices. In numerical experiments, we compare the accuracy of tile-wise pivoting and of the randomization approach with the accuracy of the Bunch-Kaufman algorithm.
Type de document :
Rapport
[Research Report] RR-7621, INRIA. 2011
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00593694
Contributeur : Marc Baboulin <>
Soumis le : mardi 17 mai 2011 - 09:45:59
Dernière modification le : mardi 24 avril 2018 - 13:38:30
Document(s) archivé(s) le : jeudi 18 août 2011 - 02:22:10

Fichier

RR-7621.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00593694, version 1

Collections

Citation

Dulceneia Becker, Marc Baboulin, Jack Dongarra. Reducing the amount of pivoting in symmetric indefinite systems. [Research Report] RR-7621, INRIA. 2011. 〈inria-00593694〉

Partager

Métriques

Consultations de la notice

221

Téléchargements de fichiers

198