Grapheme-to-Phoneme Conversion using Conditional Random Fields

Irina Illina 1 Dominique Fohr 1 Denis Jouvet 1
1 PAROLE - Analysis, perception and recognition of speech
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We propose an approach to grapheme-to-phoneme conversion based on a probabilistic method: Conditional Random Fields (CRF). CRF give a long term prediction, assume relaxed state independence condition. Moreover, we propose an algorithm to one-to-one letter to phoneme alignment needed for CRF training. This alignment is based on discrete HMM. The proposed system is validated on two pronunciation dictionaries. Different CRF features are studied: POS-tag, context size, unigram versus bigram. Our approach compares favorably with the performance of the state-of-the-art Joint-Multigram Models for the quality of the pronunciations, but provides better recall and precision measures for multiple pronunciation variants generation.
Type de document :
Communication dans un congrès
12th Annual Conference of the International Speech Communication Association - Interspeech 2011, Aug 2011, Florence, Italy. 2011
Liste complète des métadonnées

https://hal.inria.fr/inria-00614981
Contributeur : Denis Jouvet <>
Soumis le : mercredi 17 août 2011 - 17:18:06
Dernière modification le : jeudi 11 janvier 2018 - 06:19:56

Identifiants

  • HAL Id : inria-00614981, version 1

Collections

Citation

Irina Illina, Dominique Fohr, Denis Jouvet. Grapheme-to-Phoneme Conversion using Conditional Random Fields. 12th Annual Conference of the International Speech Communication Association - Interspeech 2011, Aug 2011, Florence, Italy. 2011. 〈inria-00614981〉

Partager

Métriques

Consultations de la notice

392