A New Riemannian Setting for Surface Registration

Abstract : We present a new approach for matching regular surfaces in a Riemannian setting. We use a Sobolev type metric on deformation vector fields which form the tangent bundle to the space of surfaces. In this article we compare our approach with the diffeomorphic matching framework. In the latter approach a deformation is prescribed on the ambient space, which then drags along an embedded surface. In contrast our metric is defined directly on the deformation vector field and can therefore be called an \it inner metric. We also show how to discretize the corresponding geodesic equation and compute the gradient of the cost functional using finite elements.
Type de document :
Communication dans un congrès
Pennec, Xavier and Joshi, Sarang and Nielsen, Mads. Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability, Sep 2011, Toronto, Canada. pp.182-193, 2011
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00624210
Contributeur : Xavier Pennec <>
Soumis le : vendredi 16 septembre 2011 - 10:11:47
Dernière modification le : vendredi 16 septembre 2011 - 10:19:54
Document(s) archivé(s) le : samedi 17 décembre 2011 - 02:21:32

Fichier

MFCA11_P_5.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00624210, version 1

Collections

Citation

Martin Bauer, Martins Bruveris. A New Riemannian Setting for Surface Registration. Pennec, Xavier and Joshi, Sarang and Nielsen, Mads. Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability, Sep 2011, Toronto, Canada. pp.182-193, 2011. 〈inria-00624210〉

Partager

Métriques

Consultations de la notice

192

Téléchargements de fichiers

59