Skip to Main content Skip to Navigation
New interface
Journal articles

A collaborative filtering approach for protein-protein docking scoring functions.

Thomas Bourquard 1 Julie Bernauer 2 Jérôme Azé 2 Anne Poupon 3 
1 ORPAILLEUR - Knowledge representation, reasonning
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
2 AMIB - Algorithms and Models for Integrative Biology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France
Abstract : A protein-protein docking procedure traditionally consists in two successive tasks: a search algorithm generates a large number of candidate conformations mimicking the complex existing in vivo between two proteins, and a scoring function is used to rank them in order to extract a native-like one. We have already shown that using Voronoi constructions and a well chosen set of parameters, an accurate scoring function could be designed and optimized. However to be able to perform large-scale in silico exploration of the interactome, a near-native solution has to be found in the ten best-ranked solutions. This cannot yet be guaranteed by any of the existing scoring functions. In this work, we introduce a new procedure for conformation ranking. We previously developed a set of scoring functions where learning was performed using a genetic algorithm. These functions were used to assign a rank to each possible conformation. We now have a refined rank using different classifiers (decision trees, rules and support vector machines) in a collaborative filtering scheme. The scoring function newly obtained is evaluated using 10 fold cross-validation, and compared to the functions obtained using either genetic algorithms or collaborative filtering taken separately. This new approach was successfully applied to the CAPRI scoring ensembles. We show that for 10 targets out of 12, we are able to find a near-native conformation in the 10 best ranked solutions. Moreover, for 6 of them, the near-native conformation selected is of high accuracy. Finally, we show that this function dramatically enriches the 100 best-ranking conformations in near-native structures.
Mots-clés : algoritme génétique
Complete list of metadata

Cited literature [28 references]  Display  Hide  Download
Contributor : Julie Bernauer Connect in order to contact the contributor
Submitted on : Friday, May 29, 2020 - 6:15:50 PM
Last modification on : Sunday, June 26, 2022 - 12:14:53 PM


Publisher files allowed on an open archive



Thomas Bourquard, Julie Bernauer, Jérôme Azé, Anne Poupon. A collaborative filtering approach for protein-protein docking scoring functions.. PLoS ONE, 2011, 6 (4), pp.e18541. ⟨10.1371/journal.pone.0018541⟩. ⟨inria-00625000⟩



Record views


Files downloads