Dictionary Learning for Deblurring and Digital Zoom

Florent Couzinie-Devy 1 Julien Mairal 2 Francis Bach 3 Jean Ponce 1
1 WILLOW - Models of visual object recognition and scene understanding
CNRS - Centre National de la Recherche Scientifique : UMR8548, Inria Paris-Rocquencourt, DI-ENS - Département d'informatique de l'École normale supérieure
3 SIERRA - Statistical Machine Learning and Parsimony
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR8548
Abstract : This paper proposes a novel approach to image deblurring and digital zooming using sparse local models of image appearance. These models, where small image patches are represented as linear combinations of a few elements drawn from some large set (dictionary) of candidates, have proven well adapted to several image restoration tasks. A key to their success has been to learn dictionaries adapted to the reconstruction of small image patches. In contrast, recent works have proposed instead to learn dictionaries which are not only adapted to data reconstruction, but also tuned for a specific task. We introduce here such an approach to deblurring and digital zoom, using pairs of blurry/sharp (or low-/high-resolution) images for training, as well as an effective stochastic gradient algorithm for solving the corresponding optimization task. Although this learning problem is not convex, once the dictionaries have been learned, the sharp/high-resolution image can be recovered via convex optimization at test time. Experiments with synthetic and real data demonstrate the effectiveness of the proposed approach, leading to state-of-the-art performance for non-blind image deblurring and digital zoom.
Type de document :
[Technical Report] 2011
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

Contributeur : Florent Couzinie-Devy <>
Soumis le : mercredi 28 septembre 2011 - 15:11:20
Dernière modification le : jeudi 7 février 2019 - 15:49:19
Document(s) archivé(s) le : jeudi 29 décembre 2011 - 02:27:13


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00627402, version 1



Florent Couzinie-Devy, Julien Mairal, Francis Bach, Jean Ponce. Dictionary Learning for Deblurring and Digital Zoom. [Technical Report] 2011. 〈inria-00627402〉



Consultations de la notice


Téléchargements de fichiers