Nodes self-deployment for coverage maximization in mobile robot networks using an evolving neural network

Abstract : There are many critical issues arising in wireless sensor and robot networks (WSRN). Based on the specific application, different objectives can be taken into account such as energy consumption, throughput, delay, coverage, etc. Also many schemes have been proposed in order to optimize a specific quality of service (QoS) parameter. With the focus on the self-organizing capabilities of nodes in WSRN, we propose a movement-assisted technique for nodes self-deployment. Specifically, we propose to use a neural network as a controller for nodes mobility and a genetic algorithm for the training of the neural network through reinforcement learning [27]. This kind of scheme is extremely adaptive, since it can be easily modified in order to consider different objectives and QoS parameters. In fact, it is sufficient to consider a different kind of input for the neural network to aim for a different objective. All things considered, we propose a new method for programming a WSRN and we show practically how the technique works, when the coverage of the network is the QoS parameter to optimize. Simulation results show the flexibility and effectiveness of this approach even when the application scenario changes (e.g., by introducing physical obstacles).
Type de document :
Article dans une revue
Computer Communications, Elsevier, 2012, 35 (9), pp.1047-1055. 〈10.1016/j.comcom.2011.09.004〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00627650
Contributeur : Tahiry Razafindralambo <>
Soumis le : mercredi 11 décembre 2013 - 15:59:04
Dernière modification le : lundi 12 mars 2018 - 15:22:07
Document(s) archivé(s) le : mardi 11 mars 2014 - 22:10:55

Fichier

Costanzo_2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Carmelo Costanzo, Valeria Loscri, Enrico Natalizio, Tahiry Razafindralambo. Nodes self-deployment for coverage maximization in mobile robot networks using an evolving neural network. Computer Communications, Elsevier, 2012, 35 (9), pp.1047-1055. 〈10.1016/j.comcom.2011.09.004〉. 〈inria-00627650〉

Partager

Métriques

Consultations de la notice

293

Téléchargements de fichiers

388