Left-Invariant Riemannian Elasticity: a distance on shape diffeomorphisms ?

Xavier Pennec 1
1 ASCLEPIOS - Analysis and Simulation of Biomedical Images
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : In inter-subject registration, one often lacks a good model of the transformation variability to choose the optimal regularization. Some works attempt to model the variability in a statistical way, but the re-introduction in a registration algorithm is not easy. In [1], we interpreted the elastic energy as the distance of the Green-St Venant strain tensor to the identity. By changing the Euclidean metric for a more suitable Riemannian one, we defined a consistent statistical framework to quantify the amount of deformation. In particular, the mean and the covariance matrix of the strain tensor could be efficiently computed from a population of non-linear transformations and introduced as parameters in a Mahalanobis distance to measure the statistical deviation from the observed variability. This statistical Riemannian elasticity was able to handle anisotropic deformations but its isotropic stationary version was locally inverse-consistent. In this paper, we investigate how to modify the Riemannian elasticity to make it globally inverse consistent. This allows to define a left-invariant "distance" between shape diffeomorphisms that we call the left-invariant Riemannian elasticity. Such a closed form energy on diffeomorphisms can optimize it directly without relying on a time and memory consuming numerical optimization of the geodesic path.
Type de document :
Communication dans un congrès
Xavier Pennec and Sarang Joshi. 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, Oct 2006, Copenhagen, Denmark. pp.1-13, 2006
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00634098
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : jeudi 20 octobre 2011 - 11:31:54
Dernière modification le : jeudi 11 janvier 2018 - 16:20:00
Document(s) archivé(s) le : samedi 21 janvier 2012 - 02:26:26

Fichier

Pennec_MFCA06.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00634098, version 1

Collections

Citation

Xavier Pennec. Left-Invariant Riemannian Elasticity: a distance on shape diffeomorphisms ?. Xavier Pennec and Sarang Joshi. 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, Oct 2006, Copenhagen, Denmark. pp.1-13, 2006. 〈inria-00634098〉

Partager

Métriques

Consultations de la notice

279

Téléchargements de fichiers

146