Geometric Surface and Brain Warping via Geodesic Minimizing Lipschitz Extensions

Abstract : Based on the notion of Minimizing Lipschitz Extensions and its connection with the infinity Laplacian, a theoretical and computational framework for geometric nonrigid surface warping, and in particular the nonlinear registration of brain imaging data, is presented in this paper. The basic concept is to compute a map between surfaces that minimizes a distortion measure based on geodesic distances while respecting the provided boundary conditions. In particular, the global Lipschitz constant of the map is minimized. This framework allows generic boundary conditions to be applied and direct surfaceto- surface warping. It avoids the need for intermediate maps that flatten the surface onto the plane or sphere, as is commonly done in the literature on surface-based non-rigid registration. The presentation of the framework is complemented with examples on synthetic geometric phantoms and cortical surfaces extracted from human brain MRI scans.
Type de document :
Communication dans un congrès
Xavier Pennec and Sarang Joshi. 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, Oct 2006, Copenhagen, Denmark. pp.58-67, 2006
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00635886
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mercredi 26 octobre 2011 - 11:25:24
Dernière modification le : mercredi 26 octobre 2011 - 11:28:01
Document(s) archivé(s) le : jeudi 30 mars 2017 - 18:12:11

Fichier

Memoli_MFCA06.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00635886, version 1

Collections

Citation

Facundo Mémoli, Guillermo Sapiro, Paul Thompson. Geometric Surface and Brain Warping via Geodesic Minimizing Lipschitz Extensions. Xavier Pennec and Sarang Joshi. 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, Oct 2006, Copenhagen, Denmark. pp.58-67, 2006. 〈inria-00635886〉

Partager

Métriques

Consultations de la notice

95

Téléchargements de fichiers

124