Skip to Main content Skip to Navigation
Journal articles

Grassmann secants and linear systems of tensors

Abstract : For any irreducible non-degenerate variety $X \subset \mathbb{P}^r$ , we relate the dimension of the $s$-th secant varieties of the Segre embedding of $\mathbb{P}^k\times X$ to the dimension of the $(k,s)$-Grassmann secant variety $GS_X(k,s)$ of $X$. We also give a criterion for the $s$-identifiability of $X$.
Document type :
Journal articles
Complete list of metadata

Cited literature [22 references]  Display  Hide  Download

https://hal.inria.fr/inria-00637780
Contributor : Alessandra Bernardi Connect in order to contact the contributor
Submitted on : Wednesday, November 2, 2011 - 10:08:52 PM
Last modification on : Friday, June 4, 2021 - 9:44:02 AM
Long-term archiving on: : Monday, December 5, 2016 - 3:39:40 AM

File

BBBCY.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Edoardo Ballico, Alessandra Bernardi, Maria Virgina Catalisano, Luca Chiantini. Grassmann secants and linear systems of tensors. Linear Algebra and its Applications, Elsevier, 2013, 438, pp.121-135. ⟨10.1016/j.laa.2012.07.045⟩. ⟨inria-00637780⟩

Share

Metrics

Record views

362

Files downloads

351