Conception d'un noyau de vérification de preuves pour le λΠ-calcul modulo

Mathieu Boespflug 1
1 TYPICAL - Types, Logic and computing
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR
Résumé : Ces dernières années ont vu l'émergence d'assistants interactifs de preuves riches en fonctionnalités et d'une grande maturité d'implémentation, ce qui a permis l'essor des grosses formalisations de résultats papier et la résolution de conjectures célèbres. Mais autant d'assistants de preuves reposent sur presque autant de logiques comme fondements théoriques. Cousineau et Dowek (2007) proposent le λΠ-calcul modulo comme un cadre universel cible pour tous ces environnement de démonstration. Nous montrons dans cette thèse comment ce formalisme particulièrement simple admet une implémentation d'un vérificateur de taille modeste mais pour autant modulaire et efficace, à la correction de laquelle on peut réduire la cohérence de systèmes tout entiers.

Un nombre croissant de preuves dépendent de calculs intensifs comme dans la preuve du théorème des quatre couleurs de Gonthier (2007). Les méthodologies telles que SSReflect et les outils attenants privilégient les preuves contenant de nombreux petits calculs plutôt que les preuves purement déductives. L'encodage de preuves provenant d'autres systèmes dans le λΠ-calcul modulo introduit d'autres calculs encore. Nous montrons comment gérer la taille de ces calculs en interprétant les preuves tout entières comme des programmes fonctionnels, que l'on peut compiler vers du code machine à l'aide de compilateurs standards et clé-en-main. Nous employons pour cela une variante non typée de la normalisation par évaluation (NbE), et montrons comment optimiser de précédentes formulation de celle-ci.

Au travers d'une seule petite modification à l'interprétation des termes de preuves, nous arrivons aussi à une représentation des preuves en syntaxe abstraite d'ordre supérieur (HOAS), qui admet naturellement un algorithme de typage sans aucun contexte de typage explicite. Nous généralisons cet algorithme à tous les systèmes de types purs (PTS). Nous observons que cet algorithme est une extension à un cadre avec types dépendants de l'algorithme de typage des assistants de preuves de la famille HOL. Cette observation nous amène à développer une architecture à la LCF pour une large classe de PTS, c'est à dire une architecture où tous les termes de preuves sont corrects par construction, a priori donc, et n'ont ainsi pas besoin d'être vérifié a posteriori. Nous prouvons formellement en Coq un théorème de correspondance entre les système de types sans contexte et leur pendant standard avec contexte explicite. Ces travaux jettent un pont entre deux lignées historiques d'assistants de preuves : la lignée issue de LCF à qui nous empruntons l'architecture du noyau, et celle issue de Automath, dont nous héritons la notion de types dépendants.

Les algorithmes présentés dans cette thèse sont au coeur d'un nouveau vérificateur de preuves appelé Dedukti et ont aussi été transférés vers un système plus mature : Coq. En collaboration avec Dénès, nous montrons comment étendre la NbE non typée pour gérer la syntaxe et les règles de réduction du calcul des constructions inductives (CIC). En collaboration avec Burel, nous généralisons des travaux précédents de Cousineau et Dowek (2007) sur l'encodage dans le λΠ-calcul modulo d'une large classe de PTS à des PTS avec types inductifs, motifs de filtrage et opérateurs de point fixe.

Type de document :
Thèse
Logique en informatique [cs.LO]. Ecole Polytechnique X, 2011. Français
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-00672699
Contributeur : Mathieu Boespflug <>
Soumis le : mardi 21 février 2012 - 18:01:31
Dernière modification le : jeudi 9 février 2017 - 15:16:39
Document(s) archivé(s) le : mercredi 14 décembre 2016 - 08:11:21

Identifiants

  • HAL Id : tel-00672699, version 1

Collections

Citation

Mathieu Boespflug. Conception d'un noyau de vérification de preuves pour le λΠ-calcul modulo. Logique en informatique [cs.LO]. Ecole Polytechnique X, 2011. Français. <tel-00672699>

Partager

Métriques

Consultations de
la notice

376

Téléchargements du document

266