Optimization and Uncertainty Handling in Air Traffic Management

Gaétan Marceau Caron 1
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Résumé : Cette thèse traite de la gestion du trafic aérien et plus précisément, de l'optimisation globale des plans de vol déposés par les compagnies aériennes sous contrainte du respect de la capacité de l'espace aérien. Une composante importante de ce travail concerne la gestion de l'incertitude entourant les trajectoires des aéronefs. Dans la première partie du travail, nous identifions les principales causes d'incertitude au niveau de la prédiction de trajectoires. Celle-ci est la composante essentielle à l'automatisation des systèmes de gestion du trafic aérien. Nous étudions donc le problème du réglage automatique et en-ligne des paramètres de la prédiction de trajectoires au cours de la phase de montée avec l'algorithme d'optimisation CMA-ES. La principale conclusion, corroborée par d'autres travaux de la littérature, implique que la prédiction de trajectoires des centres de contrôle n'est pas suffisamment précise aujourd'hui pour supporter l'automatisation complète des tâches critiques. Ainsi, un système d'optimisation centralisé de la gestion du trafic aérien doit prendre en compte le facteur humain et l'incertitude de façon générale. Par conséquent, la seconde partie traite du développement des modèles et des algorithmes dans une perspective globale. De plus, nous décrivons un modèle stochastique qui capture les incertitudes sur les temps de passage sur des balises de survol pour chaque trajectoire. Ceci nous permet d'inférer l'incertitude engendrée sur l'occupation des secteurs de contrôle par les aéronefs à tout moment. Dans la troisième partie, nous formulons une variante du problème classique du Air Traffic Flow and Capacity Management au cours de la phase tactique. L'intérêt est de renforcer les échanges d'information entre le gestionnaire du réseau et les contrôleurs aériens. Nous définissons donc un problème d'optimisation dont l'objectif est de minimiser conjointement les coûts de retard et de congestion tout en respectant les contraintes de séquencement au cours des phases de décollage et d'attérissage. Pour combattre le nombre de dimensions élevé de ce problème, nous choisissons un algorithme évolutionnaire multi-objectif avec une représentation indirecte du problème en se basant sur des ordonnanceurs gloutons. Enfin, nous étudions les performances et la robustesse de cette approche en utilisant le modèle stochastique défini précédemment. Ce travail est validé à l'aide de problèmes réels obtenus du Central Flow Management Unit en Europe, que l'on a aussi densifiés artificiellement.
Type de document :
Thèse
Artificial Intelligence [cs.AI]. Paris-Sud XI, 2014. English
Liste complète des métadonnées

https://hal.inria.fr/tel-01080370
Contributeur : Gaétan Marceau <>
Soumis le : mercredi 5 novembre 2014 - 10:18:53
Dernière modification le : jeudi 11 janvier 2018 - 01:49:38
Document(s) archivé(s) le : vendredi 6 février 2015 - 10:11:56

Identifiants

  • HAL Id : tel-01080370, version 1

Collections

Citation

Gaétan Marceau Caron. Optimization and Uncertainty Handling in Air Traffic Management. Artificial Intelligence [cs.AI]. Paris-Sud XI, 2014. English. 〈tel-01080370〉

Partager

Métriques

Consultations de la notice

419

Téléchargements de fichiers

1404