Mining and Modeling Variability from Natural Language Documents: Two Case Studies

Sana Ben Nasr 1
1 DiverSe - Diversity-centric Software Engineering
Inria Rennes – Bretagne Atlantique , IRISA-D4 - LANGAGE ET GÉNIE LOGICIEL
Résumé : L'analyse du domaine vise à identifier et organiser les caractéristiques communes et variables dans un domaine. Dans la pratique, le coût initial et le niveau d'effort manuel associés à cette analyse constituent un obstacle important pour son adoption par de nombreuses organisations qui ne peuvent en bénéficier. La contribution générale de cette thèse consiste à adopter et exploiter des techniques de traitement automatique du langage naturel et d'exploration de données pour automatiquement extraire et modéliser les connaissances relatives à la variabilité à partir de documents informels. L'enjeu est de réduire le coût opérationnel de l’analyse du domaine. Nous étudions l'applicabilité de notre idée à travers deux études de cas pris dans deux contextes différents: (1) la rétro-ingénierie des Modèles de Features (FMs) à partir des exigences réglementaires de sûreté dans le domaine de l’industrie nucléaire civil et (2) l’extraction de Matrices de Comparaison de Produits (PCMs) à partir de descriptions informelles de produits. Dans la première étude de cas, nous adoptons des techniques basées sur l’analyse sémantique, le regroupement des exigences et les règles d'association. Dans la deuxième étude de cas, notre approche repose sur la technologie d'analyse contrastive pour identifier les termes spécifiques au domaine à partir du texte, l'extraction des informations pour chaque produit, le regroupement des termes et le regroupement des informations. La principale leçon à tirer de ces deux études de cas, est que l’extraction et l’exploitation de la connaissance relative à la variabilité dépendent du contexte, de la nature de la variabilité et de la nature du texte.
Type de document :
Thèse
Computer Science [cs]. Université Rennes 1, 2016. English
Liste complète des métadonnées

https://hal.inria.fr/tel-01388392
Contributeur : Sana Ben Nasr <>
Soumis le : mercredi 26 octobre 2016 - 20:57:13
Dernière modification le : mercredi 2 août 2017 - 10:09:55

Identifiants

  • HAL Id : tel-01388392, version 1

Citation

Sana Ben Nasr. Mining and Modeling Variability from Natural Language Documents: Two Case Studies. Computer Science [cs]. Université Rennes 1, 2016. English. 〈tel-01388392〉

Partager

Métriques

Consultations de
la notice

594

Téléchargements du document

410