Almost sure asymptotics for the random binary search tree

Abstract : We consider a (random permutation model) binary search tree with $n$ nodes and give asymptotics on the $\log$ $\log$ scale for the height $H_n$ and saturation level $h_n$ of the tree as $n \to \infty$, both almost surely and in probability. We then consider the number $F_n$ of particles at level $H_n$ at time $n$, and show that $F_n$ is unbounded almost surely.
Type de document :
Communication dans un congrès
Drmota, Michael and Gittenberger, Bernhard. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), pp.565-576, 2010, DMTCS Proceedings
Liste complète des métadonnées

https://hal.inria.fr/hal-00459166
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 20 août 2015 - 16:32:32
Dernière modification le : mardi 7 mars 2017 - 15:07:16

Fichier

dmAM0139.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00459166, version 1

Collections

Citation

Matthew Roberts. Almost sure asymptotics for the random binary search tree. Drmota, Michael and Gittenberger, Bernhard. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), pp.565-576, 2010, DMTCS Proceedings. <hal-00459166>

Partager

Métriques

Consultations de
la notice

145

Téléchargements du document

36