Skip to Main content Skip to Navigation
New interface
Conference papers

Continuous Rapid Action Value Estimates

Adrien Couetoux 1 Mario Milone 1 Matyas Brendel 2 Hassen Doghmen 2 Michèle Sebag 2, 1 Olivier Teytaud 1, 2 
2 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : In the last decade, Monte-Carlo Tree Search (MCTS) has revolutionized the domain of large-scale Markov Decision Process problems. MCTS most often uses the Upper Confidence Tree algorithm to handle the exploration versus exploitation trade-off, while a few heuristics are used to guide the exploration in large search spaces. Among these heuristics is Rapid Action Value Estimate (RAVE). This paper is concerned with extending the RAVE heuristics to continuous action and state spaces. The approach is experimentally validated on two artificial benchmark problems: the treasure hunt game, and a real-world energy management problem.
Document type :
Conference papers
Complete list of metadata

Cited literature [16 references]  Display  Hide  Download
Contributor : Olivier Teytaud Connect in order to contact the contributor
Submitted on : Wednesday, November 23, 2011 - 3:31:28 AM
Last modification on : Tuesday, October 25, 2022 - 4:16:42 PM
Long-term archiving on: : Friday, November 16, 2012 - 11:51:15 AM


Files produced by the author(s)


  • HAL Id : hal-00642459, version 1


Adrien Couetoux, Mario Milone, Matyas Brendel, Hassen Doghmen, Michèle Sebag, et al.. Continuous Rapid Action Value Estimates. The 3rd Asian Conference on Machine Learning (ACML2011), Nov 2011, Taoyuan, Taiwan. pp.19-31. ⟨hal-00642459⟩



Record views


Files downloads