High-Order Schemes Combining the Modified Equation Approach and Discontinuous Galerkin Approximations for the Wave Equation

Cyril Agut 1, 2 Julien Diaz 1, 2 Abdelaâziz Ezziani 1, 2
2 Magique 3D - Advanced 3D Numerical Modeling in Geophysics
LMAP - Laboratoire de Mathématiques et de leurs Applications [Pau], Inria Bordeaux - Sud-Ouest
Abstract : We present a new high ordermethod in space and time for solving the wave equation, based on a newinterpretation of the "Modified Equation" technique. Indeed, contrary to most of the works, we consider the time discretization before the space discretization. After the time discretization, an additional biharmonic operator appears, which can not be discretized by classical finite elements. We propose a new Discontinuous Galerkinmethod for the discretization of this operator, and we provide numerical experiments proving that the new method is more accurate than the classicalModified Equation technique with a lower computational burden.
Type de document :
Article dans une revue
Communications in Computational Physics, Global Science Press, 2012, 11 (2), pp.691-708. 〈10.4208/cicp.311209.051110s〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00646421
Contributeur : Cyril Agut <>
Soumis le : mardi 29 novembre 2011 - 22:39:31
Dernière modification le : jeudi 11 janvier 2018 - 06:22:32

Identifiants

Collections

Citation

Cyril Agut, Julien Diaz, Abdelaâziz Ezziani. High-Order Schemes Combining the Modified Equation Approach and Discontinuous Galerkin Approximations for the Wave Equation. Communications in Computational Physics, Global Science Press, 2012, 11 (2), pp.691-708. 〈10.4208/cicp.311209.051110s〉. 〈hal-00646421〉

Partager

Métriques

Consultations de la notice

272