On entropy weak solutions of Hughes' model for pedestrian motion

Abstract : We consider a generalized version of Hughes' macroscopic model for crowd motion in the one-dimensional case. It consists in a scalar conservation law accounting for the conservation of the number of pedestrians, coupled with an eikonal equation giving the direction of the flux depending on pedestrian density. As a result of this non-trivial coupling, we have to deal with a conservation law with space-time discontinuous flux, whose discontinuity depends non-locally on the density itself. We propose a definition of entropy weak solution, which allows us to recover a maximum principle. Moreover, we study the structure of the solutions to Riemann-type problems and we construct them explicitly for small times, depending on the choice of the running cost in the eikonal equation. In particular, aiming at the optimization of the evacuation time, we propose a strategy that is optimal in the case of high densities. All results are illustrated by numerical simulations.
Type de document :
Article dans une revue
Zeitschrift für Angewandte Mathematik und Physik, Springer Verlag, 2012, 64 (2), pp.223-251. 〈10.1007/s00033-012-0232-x〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00647798
Contributeur : Paola Goatin <>
Soumis le : vendredi 2 décembre 2011 - 16:23:18
Dernière modification le : vendredi 27 juillet 2018 - 11:16:07
Document(s) archivé(s) le : samedi 3 mars 2012 - 02:35:37

Fichier

preprintKGB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nader El-Khatib, Paola Goatin, Massimiliano D. Rosini. On entropy weak solutions of Hughes' model for pedestrian motion. Zeitschrift für Angewandte Mathematik und Physik, Springer Verlag, 2012, 64 (2), pp.223-251. 〈10.1007/s00033-012-0232-x〉. 〈hal-00647798〉

Partager

Métriques

Consultations de la notice

657

Téléchargements de fichiers

631