Micro-differential boundary conditions modelling the absorption of acoustic waves by 2D arbitrarily-shaped convex surfaces

Hélène Barucq 1 Julien Diaz 1 Véronique Duprat 1
1 Magique 3D - Advanced 3D Numerical Modeling in Geophysics
LMAP - Laboratoire de Mathématiques et de leurs Applications [Pau], Inria Bordeaux - Sud-Ouest
Abstract : We propose a new Absorbing Boundary Condition (ABC) for the acoustic wave equation which is derived from a micro-local diagonalization process formerly defined by M.E. Taylor and which does not depend on the geometry of the surface bearing the ABC. By considering the principal symbol of the wave equation both in the hyperbolic and the elliptic regions, we show that a second-order ABC can be constructed as the combination of an existing first-order ABC and a Fourier-Robin condition. We compare the new ABC with other ABCs and we show that it performs well in simple configurations and that it improves the accuracy of the numerical solution without increasing the computational burden.
Type de document :
Article dans une revue
Communications in Computational Physics, Global Science Press, 2012, 11 (2), pp.674-690. 〈10.4208/cicp.311209.051110s〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00649837
Contributeur : Julien Diaz <>
Soumis le : lundi 31 août 2015 - 17:11:46
Dernière modification le : jeudi 11 janvier 2018 - 06:22:12
Document(s) archivé(s) le : mardi 1 décembre 2015 - 10:26:05

Fichier

BarucqDiazDupratCiCP.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Hélène Barucq, Julien Diaz, Véronique Duprat. Micro-differential boundary conditions modelling the absorption of acoustic waves by 2D arbitrarily-shaped convex surfaces. Communications in Computational Physics, Global Science Press, 2012, 11 (2), pp.674-690. 〈10.4208/cicp.311209.051110s〉. 〈hal-00649837〉

Partager

Métriques

Consultations de la notice

436

Téléchargements de fichiers

89