An adaptive enrichment algorithm for advection-dominated problems.

Remi Abgrall 1, 2 Arnaud Krust 2, 1, *
* Auteur correspondant
1 BACCHUS - Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems
Inria Bordeaux - Sud-Ouest, UB - Université de Bordeaux, CNRS - Centre National de la Recherche Scientifique : UMR5800
Abstract : We are interested in developing a numerical framework well suited for advection-diffusion problems when the advection part is dominant. In that case, given Dirichlet type boundary condition, it is well known that a boundary layer develops. In order to resolve correctly this layer, standard methods consist in increasing the mesh resolution and possibly increasing the formal accuracy of the numerical method. In this paper, we follow another path: we do not seek to increase the formal accuracy of the scheme but, by a careful choice of finite element, to lower the mesh resolution in the layer. Indeed the finite element representation we choose is locally the sum of a standard one plus an enrichment. This paper proposes such a method and with several numerical examples, we show the potential of this approach. In particular we show that the method is not very sensitive to the choice of the enrichment.
Type de document :
Rapport
[Research Report] RR-7866, INRIA. 2012, pp.24
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00665524
Contributeur : Arnaud Krust <>
Soumis le : jeudi 2 février 2012 - 10:48:35
Dernière modification le : jeudi 11 janvier 2018 - 06:22:35
Document(s) archivé(s) le : lundi 19 novembre 2012 - 15:40:53

Fichier

RR_7866.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00665524, version 1

Collections

Citation

Remi Abgrall, Arnaud Krust. An adaptive enrichment algorithm for advection-dominated problems.. [Research Report] RR-7866, INRIA. 2012, pp.24. 〈hal-00665524〉

Partager

Métriques

Consultations de la notice

309

Téléchargements de fichiers

150