Spectral Estimation of Conditional Random Graph Models for Large-Scale Network data

Abstract : Generative models for graphs have been typically committed to strong prior assumptions concerning the form of the modeled distributions. Moreover, the vast majority of currently available models are either only suitable for characterizing some particular network properties (such as degree distribution or clustering coefficient), or they are aimed at estimating joint probability distributions, which is often intractable in large-scale networks. In this paper, we first propose a novel network statistic, based on the Laplacian spectrum of graphs, which allows to dispense with any parametric assumption concerning the modeled network properties. Second, we use the defined statistic to develop the Fiedler random graph model, switching the focus from the estimation of joint probability distributions to a more tractable conditional estimation setting. After analyzing the dependence structure characterizing Fiedler random graphs, we evaluate them experimentally in edge prediction over several real-world networks, showing that they allow to reach a much higher prediction accuracy than various alternative statistical models.
Type de document :
Communication dans un congrès
UAI 2012 - 28th Conference on Uncertainty in Artificial Intelligence, 2012, Avalon, United States. 2012
Liste complète des métadonnées

https://hal.inria.fr/hal-00714446
Contributeur : Antonino Freno <>
Soumis le : jeudi 19 juillet 2012 - 07:00:19
Dernière modification le : jeudi 11 janvier 2018 - 06:22:13
Document(s) archivé(s) le : jeudi 15 décembre 2016 - 21:12:32

Fichier

CRGs.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00714446, version 1

Collections

Citation

Antonino Freno, Mikaela Keller, Gemma Garriga, Marc Tommasi. Spectral Estimation of Conditional Random Graph Models for Large-Scale Network data. UAI 2012 - 28th Conference on Uncertainty in Artificial Intelligence, 2012, Avalon, United States. 2012. 〈hal-00714446〉

Partager

Métriques

Consultations de la notice

282

Téléchargements de fichiers

167