Virtual control regularization of state constrained linear quadratic optimal control problems

Abstract : A numerical method for linear quadratic optimal control problems with pure state constraints is analyzed. Using the virtual control concept introduced by Cherednichenko et al. (Inverse Probl. 24:1-21, 2008) and Krumbiegel and Rösch (Control Cybern. 37(2):369-392, 2008), the state constrained optimal control problem is embedded into a family of optimal control problems with mixed control-state constraints using a regularization parameter α > 0. It is shown that the solutions of the problems with mixed control-state constraints converge to the solution of the state constrained problem in the L2 norm as α tends to zero. The regularized problems can be solved by a semi-smooth Newton method for every α > 0 and thus the solution of the original state constrained problem can be approximated arbitrarily close as α approaches zero. Two numerical examples with benchmark problems are provided.
Type de document :
Article dans une revue
Computational Optimization and Applications, Springer Verlag, 2012, 51 (2), pp.867-882. 〈10.1007/s10589-010-9353-3〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00724866
Contributeur : Estelle Bouzat <>
Soumis le : mercredi 22 août 2012 - 19:38:12
Dernière modification le : lundi 21 mars 2016 - 11:34:46

Lien texte intégral

Identifiants

Collections

Citation

Matthias Gerdts, Björn Hüppinng. Virtual control regularization of state constrained linear quadratic optimal control problems. Computational Optimization and Applications, Springer Verlag, 2012, 51 (2), pp.867-882. 〈10.1007/s10589-010-9353-3〉. 〈hal-00724866〉

Partager

Métriques

Consultations de la notice

70