Dense trajectories and motion boundary descriptors for action recognition

Heng Wang 1, * Alexander Kläser 1 Cordelia Schmid 1 Cheng-Lin Liu 2
* Auteur correspondant
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : This paper introduces a video representation based on dense trajectories and motion boundary descriptors. Trajectories capture the local motion information of the video. A dense representation guarantees a good coverage of foreground motion as well as of the surrounding context. A state-of-the-art optical flow algorithm enables a robust and efficient extraction of the dense trajectories. As descriptors we extract features aligned with the trajectories to characterize shape (point coordinates), appearance (histograms of oriented gradients) and motion (histograms of optical flow). Additionally, we introduce a descriptor based on motion boundary histograms (MBH) which rely on differential optical flow. The MBH descriptor shows to consistently outperform other state-of-the-art descriptors, in particular on real-world videos that contain a significant amount of camera motion. We evaluate our video representation in the context of action classification on eight datasets, namely KTH, YouTube, Hollywood2, UCF sports, IXMAS, UIUC, Olympic Sports and UCF50. On all datasets our approach outperforms current state-of-the-art results.
Type de document :
[Research Report] RR-8050, INRIA. 2012
Liste complète des métadonnées

Littérature citée [65 références]  Voir  Masquer  Télécharger
Contributeur : Heng Wang <>
Soumis le : vendredi 25 janvier 2013 - 18:25:42
Dernière modification le : lundi 17 décembre 2018 - 11:22:02
Document(s) archivé(s) le : samedi 1 avril 2017 - 10:47:51


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00725627, version 2



Heng Wang, Alexander Kläser, Cordelia Schmid, Cheng-Lin Liu. Dense trajectories and motion boundary descriptors for action recognition. [Research Report] RR-8050, INRIA. 2012. 〈hal-00725627v2〉



Consultations de la notice


Téléchargements de fichiers