Finite Volume and Finite Element Schemes for the Euler Equation in Cylindrical and Spherical Coordinates

Abstract : A numerical scheme is presented for the solution of the compressible Euler equations in both cylindrical and spherical coordinates. The unstructured grid solver is based on a mixed finite volume/finite element approach. Equivalence conditions linking the node-centered finite volume and the linear Lagrangian finite element scheme over unstructured grids are reported and used to devise a common framework for solving the discrete Euler equations in both the cylindrical and the spherical reference systems. Numerical simulations are presented for the explosion and implosion problems with spherical symmetry, which are solved in both the axial-radial cylindrical coordinates and the radial-azimuthal spherical coordinates. Numerical results are found to be in good agreement with one-dimensional simulations over a fine mesh.
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00730349
Contributeur : Dante De Santis <>
Soumis le : lundi 10 septembre 2012 - 16:43:13
Dernière modification le : jeudi 11 janvier 2018 - 06:22:35
Document(s) archivé(s) le : mardi 11 décembre 2012 - 03:38:39

Fichier

femtec_2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Dante De Santis, Gianluca Geraci, Alberto Guardone. Finite Volume and Finite Element Schemes for the Euler Equation in Cylindrical and Spherical Coordinates. Journal of Computational and Applied Mathematics, Elsevier, 2012, 〈10.1016/j.cam.2012.02.006〉. 〈hal-00730349〉

Partager

Métriques

Consultations de la notice

583

Téléchargements de fichiers

3536