Uncertainty Quantification for Stochastic Nonlinear Systems using Perron-Frobenius Operator and Karhunen-Lo'eve Expansion

Abstract : In this paper, a methodology for propagation of uncertainty in stochastic nonlinear dynamical systems is investigated. The process noise is approximated using Karhunen-Lo'eve (KL) expansion. Perron-Frobenius (PF) operator is used to predict the evolution of uncertainty. A multivariate Kolmogorov-Smirnov test is used to verify the proposed framework. The method is applied to predict uncertainty evolution in a Duffing oscillator and a Vanderpol's oscillator. It is observed that the solution of the approximated stochastic dynamics converges to the true solution in distribution. Finally, the proposed methodology is combined with Bayesian inference to estimate states of a nonlinear dynamical system, and its performance is compared with particle filter. The proposed estimator was found to be computationally superior than the particle filter.
Type de document :
Communication dans un congrès
CCA - IEEE International Conference on Control and Applications, Oct 2012, Dubrovnik, Croatia. IEEE, pp.1449-1454, 2012, 〈10.1109/CCA.2012.6402455〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00741997
Contributeur : Parikshit Dutta <>
Soumis le : lundi 15 octobre 2012 - 16:14:36
Dernière modification le : jeudi 11 janvier 2018 - 06:23:13
Document(s) archivé(s) le : jeudi 17 janvier 2013 - 11:25:39

Fichier

KLPFmsclatest.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Parikshit Dutta, Abhishek Halder, Raktim Bhattacharya. Uncertainty Quantification for Stochastic Nonlinear Systems using Perron-Frobenius Operator and Karhunen-Lo'eve Expansion. CCA - IEEE International Conference on Control and Applications, Oct 2012, Dubrovnik, Croatia. IEEE, pp.1449-1454, 2012, 〈10.1109/CCA.2012.6402455〉. 〈hal-00741997〉

Partager

Métriques

Consultations de la notice

442

Téléchargements de fichiers

239