Learning from a Single Labeled Face and a Stream of Unlabeled Data

Branislav Kveton 1 Michal Valko 2
2 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal, Inria Lille - Nord Europe
Abstract : Face recognition from a single image per person is a challenging problem because the training sample is extremely small. We consider a variation of this problem. In our problem, we recognize only one person, and there are no labeled data for any other person. This setting naturally arises in authentication on personal computers and mobile devices, and poses additional challenges because it lacks negative examples. We formalize our problem as one-class classification, and propose and analyze an algorithm that learns a non-parametric model of the face from a single labeled image and a stream of unlabeled data. In many domains, for instance when a person interacts with a computer with a camera, unlabeled data are abundant and easy to utilize. This is the first paper that investigates how these data can help in learning better models in the single-image-per-person setting. Our method is evaluated on a dataset of 43 people and we show that these people can be recognized 90% of time at nearly zero false positives. This recall is 25+% higher than the recall of our best performing baseline. Finally, we conduct a comprehensive sensitivity analysis of our algorithm and provide a guideline for setting its parameters in practice.
Type de document :
Communication dans un congrès
10th IEEE International Conference on Automatic Face and Gesture Recognition, Apr 2013, Shanghai, China
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00749197
Contributeur : Michal Valko <>
Soumis le : vendredi 18 janvier 2013 - 14:20:27
Dernière modification le : jeudi 11 janvier 2018 - 01:49:33
Document(s) archivé(s) le : vendredi 19 avril 2013 - 04:03:10

Fichier

kveton2013learning.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00749197, version 2

Citation

Branislav Kveton, Michal Valko. Learning from a Single Labeled Face and a Stream of Unlabeled Data. 10th IEEE International Conference on Automatic Face and Gesture Recognition, Apr 2013, Shanghai, China. 〈hal-00749197v2〉

Partager

Métriques

Consultations de la notice

456

Téléchargements de fichiers

506