Lossless scalar functions: boundary interpolation, Schur algorithm and Ober's canonical form

Abstract : In Ober (1987) a balanced canonical form for continuous-time lossless systems was presented. This form has a tridiagonal dynamical matrix A and the useful property that the corresponding controllability matrix K is upper triangular. In this paper, a connection is established between Ober's canonical form and a Schur algorithm builts from angular derivative interpolation conditions. It provides a new interpretation of the parameters in Ober's form, as interpolation values at infinity, and a recursive construction of the balanced realization.
Type de document :
Communication dans un congrès
Conference on Decision and Control - 2008, Dec 2008, Cancun, United States. IEEE, pp.1845-1850, 2008, Proceedings of the 47th IEEE Conference on Decision and Control. 〈10.1109/CDC.2008.4738839〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00753646
Contributeur : Martine Olivi <>
Soumis le : lundi 19 novembre 2012 - 14:44:38
Dernière modification le : jeudi 11 janvier 2018 - 16:24:42
Document(s) archivé(s) le : jeudi 21 février 2013 - 11:26:21

Fichier

CDC08-1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Martine Olivi, Bernard Hanzon, Ralf L.M. Peeters. Lossless scalar functions: boundary interpolation, Schur algorithm and Ober's canonical form. Conference on Decision and Control - 2008, Dec 2008, Cancun, United States. IEEE, pp.1845-1850, 2008, Proceedings of the 47th IEEE Conference on Decision and Control. 〈10.1109/CDC.2008.4738839〉. 〈hal-00753646〉

Partager

Métriques

Consultations de la notice

308

Téléchargements de fichiers

90