An Optimal Transport Approach to Robust Reconstruction and Simplification of 2D Shapes

Abstract : We propose a robust 2D shape reconstruction and simplification algorithm which takes as input a defect-laden point set with noise and outliers. We introduce an optimal-transport driven approach where the input point set, considered as a sum of Dirac measures, is approximated by a simplicial complex considered as a sum of uniform measures on 0- and 1-simplices. A fine-to-coarse scheme is devised to construct the resulting simplicial complex through greedy decimation of a Delaunay triangulation of the input point set. Our method performs well on a variety of examples ranging from line drawings to grayscale images, with or without noise, features, and boundaries.
Type de document :
Article dans une revue
Computer Graphics Forum, Wiley, 2011, Eurographics Symposium on Geometry Processing 2011, 30 (5), pp.1593-1602
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/hal-00758019
Contributeur : Pierre Alliez <>
Soumis le : lundi 27 mai 2013 - 11:53:13
Dernière modification le : samedi 27 janvier 2018 - 01:31:40
Document(s) archivé(s) le : vendredi 31 mars 2017 - 16:48:00

Fichiers

DCAD11.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00758019, version 1

Collections

Citation

Fernando De Goes, David Cohen-Steiner, Pierre Alliez, Mathieu Desbrun. An Optimal Transport Approach to Robust Reconstruction and Simplification of 2D Shapes. Computer Graphics Forum, Wiley, 2011, Eurographics Symposium on Geometry Processing 2011, 30 (5), pp.1593-1602. 〈hal-00758019〉

Partager

Métriques

Consultations de la notice

370

Téléchargements de fichiers

379