Rational Approximation of Transfer Functions for Non-Negative EPT Densities

Abstract : An Exponential-Polynomial-Trigonometric (EPT) function is defined on [0,∞) by a minimal realization (A, b, c). A stable non-negative EPT function of a fixed degree is fitted to the histogram of a large set of data using an L2 criterion. If we neglect the non-negativity constraint this is shown to be equivalent to a rational approximation problem which is approached using the RARL2 software. We show how, under the additional assumption of the existence of a strictly dominant real pole of the rational function, the non-negativity constraint on the EPT function can be imposed by performing a constraint convex optimization on b at each stage at which an (A, c) pair is determined. In this convex optimization step a recent generalized Budan-Fourier sequence approach to determine non-negativity of an EPT function on a finite interval plays a major role.
Type de document :
Communication dans un congrès
Kinnaert, Michel. 16th IFAC Symposium on System Identification, Jul 2012, Bruxelles, Belgium. IFAC, 16 part 1, pp.716-721, 2012, System Identification. 〈10.3182/20120711-3-BE-2027.00197〉
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00763205
Contributeur : Martine Olivi <>
Soumis le : lundi 10 décembre 2012 - 12:04:03
Dernière modification le : jeudi 11 janvier 2018 - 16:41:59
Document(s) archivé(s) le : lundi 11 mars 2013 - 12:20:17

Fichier

Sexton_Olivi_Hanzon_2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Conor Sexton, Martine Olivi, Bernard Hanzon. Rational Approximation of Transfer Functions for Non-Negative EPT Densities. Kinnaert, Michel. 16th IFAC Symposium on System Identification, Jul 2012, Bruxelles, Belgium. IFAC, 16 part 1, pp.716-721, 2012, System Identification. 〈10.3182/20120711-3-BE-2027.00197〉. 〈hal-00763205〉

Partager

Métriques

Consultations de la notice

362

Téléchargements de fichiers

200