Force-based Cooperative Search Directions in Evolutionary Multi-objective Optimization

Bilel Derbel 1, 2 Dimo Brockhoff 1 Arnaud Liefooghe 1, 2
1 DOLPHIN - Parallel Cooperative Multi-criteria Optimization
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe
Abstract : In order to approximate the set of Pareto optimal solutions, several evolutionary multi-objective optimization (EMO) algorithms transfer the multi-objective problem into several independent single-objective ones by means of scalarizing functions. The choice of the scalarizing functions' underlying search directions, however, is typically problem-dependent and therefore difficult if no information about the problem characteristics are known before the search process. The goal of this paper is to present new ideas of how these search directions can be computed \emph{adaptively} during the search process in a \emph{cooperative} manner. Based on the idea of Newton's law of universal gravitation, solutions attract and repel each other \emph{in the objective space}. Several force-based EMO algorithms are proposed and compared experimentally on general bi-objective $\rho$MNK landscapes with different objective correlations. It turns out that the new approach is easy to implement, fast, and competitive with respect to a $(\mu+\lambda)$-SMS-EMOA variant, in particular if the objectives show strong positive or negative correlations.
Type de document :
Communication dans un congrès
7th International Conference on Evolutionary Multi-Criterion Optimization, Mar 2013, Sheffield, United Kingdom. 7811, 2013, Lecture Notes in Computer Science. 〈10.1007/978-3-642-37140-0_30〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00765179
Contributeur : Bilel Derbel <>
Soumis le : jeudi 4 avril 2013 - 15:15:59
Dernière modification le : jeudi 11 janvier 2018 - 06:22:13
Document(s) archivé(s) le : vendredi 5 juillet 2013 - 02:30:11

Fichier

paperForces_authorVersion.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Bilel Derbel, Dimo Brockhoff, Arnaud Liefooghe. Force-based Cooperative Search Directions in Evolutionary Multi-objective Optimization. 7th International Conference on Evolutionary Multi-Criterion Optimization, Mar 2013, Sheffield, United Kingdom. 7811, 2013, Lecture Notes in Computer Science. 〈10.1007/978-3-642-37140-0_30〉. 〈hal-00765179〉

Partager

Métriques

Consultations de la notice

337

Téléchargements de fichiers

130