Anisotropic a posteriori error estimation for the mixed discontinuous Galerkin approximation of the Stokes problem

Abstract : The paper presents a posteriori error estimates for the mixed discontinuous Galerkin approximation of the stationary Stokes problem. We consider anisotropic finite element discretizations, i.e. elements with very large aspect ratio. Our analysis covers two- and three-dimensional domains. Lower and upper error bounds are proved with minimal assumptions on the meshes. The lower error bound is uniform with respect to the mesh anisotropy. The upper error bound depends on a proper alignment of the anisotropy of the mesh which is a common feature of anisotropic error estimation. In the special case of isotropic meshes, the results simplify, and upper and lower error bounds hold unconditionally. The numerical experiments confirm the theoretical predictions and show the usefulness of the anisotropic error estimator.
Type de document :
Article dans une revue
Numerical Methods for Partial Differential Equations, Wiley, 2006
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00768690
Contributeur : Emmanuel Creusé <>
Soumis le : samedi 22 décembre 2012 - 22:31:37
Dernière modification le : mercredi 21 novembre 2018 - 14:52:10
Document(s) archivé(s) le : samedi 23 mars 2013 - 03:47:53

Fichier

creuse_nicaise06b.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00768690, version 1

Collections

Citation

Emmanuel Creusé, Serge Nicaise. Anisotropic a posteriori error estimation for the mixed discontinuous Galerkin approximation of the Stokes problem. Numerical Methods for Partial Differential Equations, Wiley, 2006. 〈hal-00768690〉

Partager

Métriques

Consultations de la notice

213

Téléchargements de fichiers

105