Transfer in Reinforcement Learning: a Framework and a Survey

Alessandro Lazaric 1
1 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal
Abstract : Transfer in reinforcement learning is a novel research area that focuses on the development of methods to transfer knowledge from a set of source tasks to a target task. Whenever the tasks are \textit{similar}, the transferred knowledge can be used by a learning algorithm to solve the target task and significantly improve its performance (e.g., by reducing the number of samples needed to achieve a nearly optimal performance). In this chapter we provide a formalization of the general transfer problem, we identify the main settings which have been investigated so far, and we review the most important approaches to transfer in reinforcement learning.
Type de document :
Chapitre d'ouvrage
Marco Wiering, Martijn van Otterlo. Reinforcement Learning - State of the art, 12, Springer, pp.143-173, 2012, <10.1007/978-3-642-27645-3_5>
Liste complète des métadonnées

https://hal.inria.fr/hal-00772626
Contributeur : Alessandro Lazaric <>
Soumis le : jeudi 10 janvier 2013 - 18:51:33
Dernière modification le : jeudi 10 janvier 2013 - 20:51:47
Document(s) archivé(s) le : jeudi 11 avril 2013 - 04:08:54

Fichier

transfer.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alessandro Lazaric. Transfer in Reinforcement Learning: a Framework and a Survey. Marco Wiering, Martijn van Otterlo. Reinforcement Learning - State of the art, 12, Springer, pp.143-173, 2012, <10.1007/978-3-642-27645-3_5>. <hal-00772626>

Partager

Métriques

Consultations de
la notice

253

Téléchargements du document

895