A formal series approach to averaging: exponentially small error estimates

Abstract : The techniques, based on formal series and combinatorics, used nowadays to analyze numerical integrators may be applied to perform high-order averaging in oscillatory periodic or quasi-periodic dynamical systems. When this approach is employed, the averaged system may be written in terms of (i) scalar coefficients that are universal, i.e. independent of the system under consideration and (ii) basis functions that may be written in an explicit, systematic way in terms of the derivatives of the Fourier coefficients of the vector field being averaged. The coefficients may be recursively computed in a simple fashion. We show that this approach may be used to obtain exponentially small error estimates, as those first derived by Neishtadt. All the constants that feature in the estimates have a simple explicit expression.
Type de document :
Article dans une revue
Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, 2012, 32 (9), 〈10.3934/dcds.2012.32.3009〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00777178
Contributeur : Philippe Chartier <>
Soumis le : jeudi 17 janvier 2013 - 11:00:11
Dernière modification le : jeudi 15 novembre 2018 - 11:57:05
Document(s) archivé(s) le : jeudi 18 avril 2013 - 03:59:33

Fichier

orlando.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Philippe Chartier, Ander Murua, Jesus Maria Sanz-Serna. A formal series approach to averaging: exponentially small error estimates. Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, 2012, 32 (9), 〈10.3934/dcds.2012.32.3009〉. 〈hal-00777178〉

Partager

Métriques

Consultations de la notice

494

Téléchargements de fichiers

131