Road Scene Analysis by Stereovision: a Robust and Quasi-Dense Approach

Abstract : A stereovision method is presented in this paper, to compute reliable and quasi-dense disparity maps of road scenes using in-vehicle cameras. It combines the advantages of the "v-disparity" approach and a quasi-dense matching algorithm. In this aim, road surface and vertical planes of the scene are first extracted using the sparse "v-disparity" approach. The knowledge of these global surfaces of the scene is then used to guide a quasi-dense matching algorithm and to propagate disparity information on horizontal edges. Both algorithms are presented and compared. Then, our approach is presented and examples of quasi-dense disparity maps are given. Finally, the efficiency of the method is illustrated by the accurate positioning of a bounding box around a vehicle in a bad contrasted video sequence.
Type de document :
Communication dans un congrès
International Conference on Control, Automation, Robotics and Vision (ICARCV), 2006, Singapour, Singapore. IEEE, 2006, 〈10.1109/ICARCV.2006.345163〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00780665
Contributeur : Mathias Perrollaz <>
Soumis le : jeudi 24 janvier 2013 - 15:43:58
Dernière modification le : jeudi 11 octobre 2018 - 08:48:02
Document(s) archivé(s) le : jeudi 25 avril 2013 - 03:53:58

Fichier

ICARCV2006_SemiDense.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Nicolas Hautière, Raphaël Labayrade, Mathias Perrollaz, Didier Aubert. Road Scene Analysis by Stereovision: a Robust and Quasi-Dense Approach. International Conference on Control, Automation, Robotics and Vision (ICARCV), 2006, Singapour, Singapore. IEEE, 2006, 〈10.1109/ICARCV.2006.345163〉. 〈hal-00780665〉

Partager

Métriques

Consultations de la notice

684

Téléchargements de fichiers

503