An Adaptive Incremental Clustering Method Based on the Growing Neural Gas Algorithm

Mohamed-Rafik Bouguelia 1 Yolande Belaïd 1 Abdel Belaïd 1
1 READ - Recognition of writing and analysis of documents
LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : Usually, incremental algorithms for data streams clustering not only suffer from sensitive initialization parameters, but also incorrectly represent large classes by many cluster representatives, which leads to decrease the computational efficiency over time. We propose in this paper an incremental clustering algorithm based on "growing neural gas" (GNG), which addresses this issue by using a parameter-free adaptive threshold to produce representatives and a distance-based probabilistic criterion to eventually condense them. Experiments show that the proposed algorithm is competitive with existing algorithms of the same family, while maintaining fewer representatives and being independent of sensitive parameters.
Type de document :
Communication dans un congrès
2nd International Conference on Pattern Recognition Applications and Methods - ICPRAM 2013, Feb 2013, Barcelona, Spain. SciTePress, pp.42-49, 2013, 〈10.5220/0004256600420049〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00794354
Contributeur : Mohamed-Rafik Bouguelia <>
Soumis le : lundi 25 février 2013 - 16:16:49
Dernière modification le : mardi 24 avril 2018 - 13:36:13
Document(s) archivé(s) le : dimanche 26 mai 2013 - 08:25:14

Fichier

AING.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Mohamed-Rafik Bouguelia, Yolande Belaïd, Abdel Belaïd. An Adaptive Incremental Clustering Method Based on the Growing Neural Gas Algorithm. 2nd International Conference on Pattern Recognition Applications and Methods - ICPRAM 2013, Feb 2013, Barcelona, Spain. SciTePress, pp.42-49, 2013, 〈10.5220/0004256600420049〉. 〈hal-00794354〉

Partager

Métriques

Consultations de la notice

439

Téléchargements de fichiers

1171