Counting eigenvalues in domains of the complex field

Emmanuel Kamgnia 1 Bernard Philippe 2
2 SAGE - Simulations and Algorithms on Grids for Environment
Inria Rennes – Bretagne Atlantique , IRISA-D1 - SYSTÈMES LARGE ÉCHELLE
Abstract : A procedure for counting the number of eigenvalues of a matrix in a region surrounded by a closed curve is presented. It is based on the application of the residual theorem. The quadrature is performed by evaluating the principal argument of the logarithm of a function. A strategy is proposed for selecting a path length that insures that the same branch of the logarithm is followed during the integration. Numerical tests are reported for matrices obtained from conventional matrix test sets.
Type de document :
Article dans une revue
Electronic Transactions on Numerical Analysis, Kent State University Library, 2013, 40, pp.1-16
Liste complète des métadonnées

https://hal.inria.fr/hal-00795730
Contributeur : Jocelyne Erhel <>
Soumis le : jeudi 28 février 2013 - 18:36:55
Dernière modification le : mercredi 11 avril 2018 - 01:51:01

Identifiants

  • HAL Id : hal-00795730, version 1

Citation

Emmanuel Kamgnia, Bernard Philippe. Counting eigenvalues in domains of the complex field. Electronic Transactions on Numerical Analysis, Kent State University Library, 2013, 40, pp.1-16. 〈hal-00795730〉

Partager

Métriques

Consultations de la notice

275