Lyapunov function based step size control for numerical ODE solvers with application to optimization algorithms.

Abstract : We present and analyze an abstract step size selection algorithm which ensures asymptotic stability of numerical approximations to asymptotically stable ODEs. A particular implementation of this algorithm is proposed and tested with two numerical examples. The application to ODEs solving nonlinear optimization problems on manifolds is explained and illustrated by means of the Rayleigh flow for computing eigenvalues of symmetric matrices.
Type de document :
Chapitre d'ouvrage
K. Hüper and J. Trumpf. Mathematical System Theory - Festschrift in Honor of Uwe Helmke on the Occasion of his 60th Birthday, CreateSpace, pp.183 - 210, 2013, 978-1470044008
Liste complète des métadonnées

https://hal.inria.fr/hal-00800458
Contributeur : Estelle Bouzat <>
Soumis le : mercredi 13 mars 2013 - 16:39:09
Dernière modification le : vendredi 13 octobre 2017 - 17:08:16

Identifiants

  • HAL Id : hal-00800458, version 1

Collections

Citation

Lars Grüne, Iasson Karafyllis. Lyapunov function based step size control for numerical ODE solvers with application to optimization algorithms.. K. Hüper and J. Trumpf. Mathematical System Theory - Festschrift in Honor of Uwe Helmke on the Occasion of his 60th Birthday, CreateSpace, pp.183 - 210, 2013, 978-1470044008. 〈hal-00800458〉

Partager

Métriques

Consultations de la notice

115