Normal forms of necessary conditions for dynamic optimization problems with pathwise inequality constraints

Abstract : There has been a longstanding interest in deriving conditions under which dynamic optimization problems are normal, that is, the necessary conditions of optimality (NCO) can be written with a nonzero multiplier associated with the objective function. This paper builds upon previous results on nondegenerate NCO for trajectory constrained optimal control problems to provide even stronger, normal forms of the conditions. The NCO developed may address problems with nonsmooth, less regular data. The particular case of calculus of variations problems is here explored to show a favorable comparison with existent res
Type de document :
Article dans une revue
Journal of Mathematical Analysis and applications, Elsevier, 2013, 399 (1), pp.27-37. 〈10.1016/j.jmaa.2012.09.049〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00800527
Contributeur : Estelle Bouzat <>
Soumis le : mercredi 13 mars 2013 - 18:48:02
Dernière modification le : lundi 21 mars 2016 - 11:30:01

Identifiants

Collections

Citation

Fernando Fontes, Sofia Lopes. Normal forms of necessary conditions for dynamic optimization problems with pathwise inequality constraints. Journal of Mathematical Analysis and applications, Elsevier, 2013, 399 (1), pp.27-37. 〈10.1016/j.jmaa.2012.09.049〉. 〈hal-00800527〉

Partager

Métriques

Consultations de la notice

131