Skip to Main content Skip to Navigation
Journal articles

Lipschitz stability estimate in the inverse Robin problem for the Stokes system

Anne-Claire Egloffe 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : We are interested in the inverse problem of recovering a Robin coefficient defined on some non accessible part of the boundary from available data on another part of the boundary in the nonstationary Stokes system. We prove a Lipschitz stability estimate under the a priori assumption that the Robin coefficient lives in some compact and convex subset of a finite dimensional vectorial subspace of the set of continuous functions. To do so, we use a theorem proved by L. Bourgeois which establishes Lipschitz stability estimates for a class of inverse problems in an abstract framework.
Document type :
Journal articles
Complete list of metadata

Cited literature [14 references]  Display  Hide  Download

https://hal.inria.fr/hal-00803413
Contributor : Anne-Claire Egloffe <>
Submitted on : Thursday, March 21, 2013 - 7:41:54 PM
Last modification on : Thursday, January 14, 2021 - 11:56:03 AM
Long-term archiving on: : Saturday, June 22, 2013 - 7:25:07 AM

Files

lischitz_stability.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00803413, version 1
  • ARXIV : 1303.5389

Collections

Citation

Anne-Claire Egloffe. Lipschitz stability estimate in the inverse Robin problem for the Stokes system. Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2013. ⟨hal-00803413⟩

Share

Metrics

Record views

422

Files downloads

419