Filling the Gap Between Lower-C1 and Lower-C2 Functions

Abstract : The classes of lower-C1,α functions (0 < α ≤ 1), that is, functions locally representable as a maximum of a compactly parametrized family of continuously differentiable functions with α-H ̈older derivative, are hereby introduced. These classes form a strictly decreasing sequence from the larger class of lower-C1 towards the smaller class of lower-C2 functions, and can be analogously characterized via perturbed con- vex inequalities or via appropriate generalized monotonicity properties of their subdifferentials. Several examples are provided and a complete classification is given.
Type de document :
Article dans une revue
Journal of Convex Analysis, Heldermann, 2005, 12 (2), pp.315-329
Liste complète des métadonnées

https://hal.inria.fr/hal-00804407
Contributeur : Jérôme Malick <>
Soumis le : lundi 25 mars 2013 - 14:35:04
Dernière modification le : mercredi 11 avril 2018 - 01:55:26
Document(s) archivé(s) le : mercredi 26 juin 2013 - 04:02:29

Fichier

daniilidis-malick.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00804407, version 1

Collections

Citation

Aris Daniilidis, Jérôme Malick. Filling the Gap Between Lower-C1 and Lower-C2 Functions. Journal of Convex Analysis, Heldermann, 2005, 12 (2), pp.315-329. 〈hal-00804407〉

Partager

Métriques

Consultations de la notice

232

Téléchargements de fichiers

108