Discrete logarithm in GF($2^{809}$) with FFS

Razvan Barbulescu 1 Cyril Bouvier 1 Jérémie Detrey 1 Pierrick Gaudry 1 Hamza Jeljeli 1 Emmanuel Thomé 1 Marion Videau 1 Paul Zimmermann 1
1 CARAMEL - Cryptology, Arithmetic: Hardware and Software
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : The year 2013 has seen several major complexity advances for the discrete logarithm problem in multiplicative groups of small- characteristic finite fields. These outmatch, asymptotically, the Function Field Sieve (FFS) approach, which was so far the most efficient algorithm known for this task. Yet, on the practical side, it is not clear whether the new algorithms are uniformly better than FFS. This article presents the state of the art with regard to the FFS algorithm, and reports data from a record-sized discrete logarithm computation in a prime-degree extension field.
Type de document :
Communication dans un congrès
Hugo Krawczyk. PKC 2014 - International Conference on Practice and Theory of Public-Key Cryptography, 2014, Buenos Aires, Argentina. Springer, 2014, LNCS. <10.1007/978-3-642-54631-0_13>
Liste complète des métadonnées


https://hal.inria.fr/hal-00818124
Contributeur : Pierrick Gaudry <>
Soumis le : samedi 9 novembre 2013 - 11:43:23
Dernière modification le : mardi 13 décembre 2016 - 15:40:33
Document(s) archivé(s) le : vendredi 7 avril 2017 - 23:08:19

Fichier

ffs809.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Razvan Barbulescu, Cyril Bouvier, Jérémie Detrey, Pierrick Gaudry, Hamza Jeljeli, et al.. Discrete logarithm in GF($2^{809}$) with FFS. Hugo Krawczyk. PKC 2014 - International Conference on Practice and Theory of Public-Key Cryptography, 2014, Buenos Aires, Argentina. Springer, 2014, LNCS. <10.1007/978-3-642-54631-0_13>. <hal-00818124v3>

Partager

Métriques

Consultations de
la notice

1324

Téléchargements du document

562