Oriented trees in digraphs - Archive ouverte HAL Access content directly
Journal Articles Discrete Mathematics Year : 2013

Oriented trees in digraphs

(1) , (2) , (3) , , (4)
1
2
3
4

Abstract

Let $f(k)$ be the smallest integer such that every $f(k)$-chromatic digraph contains every oriented tree of order $k$. Burr proved $f(k)\leq (k-1)^2$ in general, and he conjectured $f(k)=2k-2$. Burr also proved that every $(8k-7)$-chromatic digraph contains every antidirected tree. We improve both of Burr's bounds. We show that $f(k)\leq k^2/2-k/2+1$ and that every antidirected tree of order $k$ is contained in every $(5k-9)$-chromatic digraph. We make a conjecture that explains why antidirected trees are easier to handle. It states that if $|E(D)| > (k-2) |V(D)|$, then the digraph $D$ contains every antidirected tree of order $k$. This is a common strengthening of both Burr's conjecture for antidirected trees and the celebrated Erd\H{o}s-Sós Conjecture. The analogue of our conjecture for general trees is false, no matter what function $f(k)$ is used in place of $k-2$. We prove our conjecture for antidirected trees of diameter 3 and present some other evidence for it. Along the way, we show that every acyclic $k$-chromatic digraph contains every oriented tree of order $k$ and suggest a number of approaches for making further progress on Burr's conjecture.
Fichier principal
Vignette du fichier
ortree-final.pdf (413.45 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00821609 , version 1 (23-10-2016)

Identifiers

Cite

Louigi Addario-Berry, Frédéric Havet, Claudia Linhares Sales, Bruce Reed, Stéphan Thomassé. Oriented trees in digraphs. Discrete Mathematics, 2013, 313 (8), pp.967-974. ⟨10.1016/j.disc.2013.01.011⟩. ⟨hal-00821609⟩
176 View
166 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More